Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurodegener ; 16(1): 77, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772429

RESUMO

BACKGROUND: Parkinson's disease is a disabling neurodegenerative movement disorder characterized by dopaminergic neuron loss induced by α-synuclein oligomers. There is an urgent need for disease-modifying therapies for Parkinson's disease, but drug discovery is challenged by lack of in vivo models that recapitulate early stages of neurodegeneration. Invertebrate organisms, such as the nematode worm Caenorhabditis elegans, provide in vivo models of human disease processes that can be instrumental for initial pharmacological studies. METHODS: To identify early motor impairment of animals expressing α-synuclein in dopaminergic neurons, we first used a custom-built tracking microscope that captures locomotion of single C. elegans with high spatial and temporal resolution. Next, we devised a method for semi-automated and blinded quantification of motor impairment for a population of simultaneously recorded animals with multi-worm tracking and custom image processing. We then used genetic and pharmacological methods to define the features of early motor dysfunction of α-synuclein-expressing C. elegans. Finally, we applied the C. elegans model to a drug repurposing screen by combining it with an artificial intelligence platform and cell culture system to identify small molecules that inhibit α-synuclein oligomers. Screen hits were validated using in vitro and in vivo mammalian models. RESULTS: We found a previously undescribed motor phenotype in transgenic α-synuclein C. elegans that correlates with mutant or wild-type α-synuclein protein levels and results from dopaminergic neuron dysfunction, but precedes neuronal loss. Together with artificial intelligence-driven in silico and in vitro screening, this C. elegans model identified five compounds that reduced motor dysfunction induced by α-synuclein. Three of these compounds also decreased α-synuclein oligomers in mammalian neurons, including rifabutin which has not been previously investigated for Parkinson's disease. We found that treatment with rifabutin reduced nigrostriatal dopaminergic neurodegeneration due to α-synuclein in a rat model. CONCLUSIONS: We identified a C. elegans locomotor abnormality due to dopaminergic neuron dysfunction that models early α-synuclein-mediated neurodegeneration. Our innovative approach applying this in vivo model to a multi-step drug repurposing screen, with artificial intelligence-driven in silico and in vitro methods, resulted in the discovery of at least one drug that may be repurposed as a disease-modifying therapy for Parkinson's disease.


Assuntos
Transtornos Motores , alfa-Sinucleína , Animais , Inteligência Artificial , Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Mamíferos/metabolismo , Transtornos Motores/metabolismo , Ratos , alfa-Sinucleína/metabolismo
2.
J Vis Exp ; (168)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33616088

RESUMO

Estimation of the number of dopaminergic neurons in the substantia nigra is a key method in pre-clinical Parkinson's disease research. Currently, unbiased stereological counting is the standard for quantification of these cells, but it remains a laborious and time-consuming process, which may not be feasible for all projects. Here, we describe the use of an image analysis platform, which can accurately estimate the quantity of labeled cells in a pre-defined region of interest. We describe a step-by-step protocol for this method of analysis in rat brain and demonstrate it can identify a significant reduction in tyrosine hydroxylase positive neurons due to expression of mutant α-synuclein in the substantia nigra. We validated this methodology by comparing with results obtained by unbiased stereology. Taken together, this method provides a time-efficient and accurate process for detecting changes in dopaminergic neuron number, and thus is suitable for efficient determination of the effect of interventions on cell survival.


Assuntos
Neurônios Dopaminérgicos/citologia , Processamento de Imagem Assistida por Computador/métodos , Imuno-Histoquímica/métodos , Substância Negra/citologia , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/metabolismo , Animais , Neurônios Dopaminérgicos/metabolismo , Feminino , Ratos , Ratos Sprague-Dawley , Substância Negra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...